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SUMMARY

This paper presents the results of some studies on the development and application of a finite element method
(FEM) with a closed-form solution technique for time discretization. The closed-form solution is based on the
eigenvalues/vectors of a coefficient matrix. The method is first applied to the one-dimensional linearized shallow
water equations and then extended to the two-dimensional shallow water equations. An attempt is made to
improve its efficiency by incorporating time splitting and using the closed-form solution technique only for linear
terms. Some case studies of a rectangular channel and harbour are presented to illustrate the satisfactory working
of the method.# 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 953–963, 1997.
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1. INTRODUCTION

For the hydrodynamic modelling of wide coastal water bodies, the two-dimensional shallow water
equations must be solved numerically. A number of finite difference and finite element models for
this purpose are available in the literature. In general the finite element models1–8 are based on
discretization of the time domain by finite differences. An attempt is made here to use a closed-form
solution technique based on the eigenvalues=vectors of a coefficient matrix for the time domain,
while the space domain is discretized by finite elements. The formulation of this FEM to solve the 1D
(simplified) and 2D shallow water equations and its applications are described below.

2. GOVERNING EQUATIONS

2.1. 1D shallow water equations

The following linearized 1D shallow water equations with constant water depth and without a
friction term have been chosen to test the scheme, since these have analytical solutions:2
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wherez is the water level,h is the water depth,u is the longitudinal flow velocity,g is the acceleration
due to gravity,x is the distance along the channel andt is time.

These equations can be used to simulate a standing wave in a rectangular prismatic channel of
lengthL, with constant water depth, closed at one end�x � L� and subjected to wave action at the
open end�x � 0�. The wave equation considered is

z � a0 sin�ot�; �3�

wherea0 is the amplitude,o � 2p=T is the frequency of oscillation andT is the period. The analytical
solutions2,3 to the standing wave of equations (1) and (2) are

z � Ah cosF sin�ot�; �4�

u � ÿAc sinF cos�o; t�; �5�

with A � a0
=h cos�L=c�;F � L�x=L ÿ 1�=c andc2

� gh.

2.2. 2D shallow water equations

The following two-dimensional, vertically integrated shallow water equations have been solved
numerically by the FEM:
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2
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=c2H , wherex andy are Cartesian co-ordinates,t is time,u andv are vertically
averaged velocities in thex- and y-direction respectively,z is the water level above the reference
plane,H � h � z is the total water depth,f is the Coriolis parameter,a is the eddy viscosity andt is
the friction parameter.

3. FEM FORMULATION

3.1. 1D Eigenvalue FEM

Using the Galerkin method and linear shape functions [N] for approximatingz andu, equations (1)
and (2) can be discretized to become the following for an element:
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After assembling all the element matrices, the global matrix equation can be written as

�AL�f _Ug � �AR�fUg �10�
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or

f
_Ug � �K�fUg; with �K� � �AL�ÿ1

�AR�: �11�

This matrix equation can be integrated directly9 as

fUg � �X eLT Xÿ1
�fU0g; �12�

whereX is a matrix whose columns are the eigenvectorsxi of [K], eLT is a matrix witheli t on the
diagonal (li being eigenvalues of [K]) and zero elsewhere,Xÿ1 is the inverse ofX and fU0g is the
vector of initial values of variablesui.

In this FEM the solution is marched with a time step and Dirichlet-type boundary conditions are
imposed by directly updating the boundary values after each step.

If n is the number of nodes, then�AL�; �AR�; �K�; �X eLT Xÿ1
�, etc. are matrices of order2n � 2n. The

matrix [AL] is tridiagonal for one-dimensional problems. The IMSL library routines available on the
Cyber 840 computer have been used for computingX ; Xÿ1, etc.

3.2. 2D eigenvalue FEM (EV)

The 1D eigenvalue FEM is extended to equations (6)–(8). Discretization of these equations by the
Galerkin method using linear triangular elements leads to the matrix equation.
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The various submatrices of equation (13) are given below using the inner-product notation
ha; bi �

� �
a � b dx dy:
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After assembly, equation (13) can be expressed in the form of equation (10) or (11) whose solution is
given by equation (12).

In this case, ifn is the number of nodes in the solution domain, then [K] is a 3n � 3n asymmetric
matrix andX ; eLT andXÿ1 are complex matrices.

Because of the non-linear terms in the continuity and momentum equations, the matrix�K� is not
stationary. Hence in each time step the matrix of eigenvectors,X, and its inverse must be computed,
which consumes a large amount of CPU time.

3.3. Eigenvalue FEM with splitting (EVSP)

For efficient solution the EV method is improved to EVSP by using a splitting technique similar to
the splitting method of Marchuk10 and Chau and Lee.11 In this case the shallow water equations can
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be split into two operators. This approach enables us to separate the linear and non-linear terms into
two parts and use separate numerical solution algorithms.

Using the Galerkin method with linear triangular elements, the two-dimensional shallow water
equations can be written in the form of equation (13) for an element. Further, this can be written as
the matrix equation
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where

M 0X2 � M 0Y3 � M5; M 00X2 ÿ M 00Y3 � ÿ�M2 � M3 � M4�:

After assembling over all the elements, equation (14) becomes

�AL�f _Ug � �AR1�fUg � �AR2�fUg; �15�

where [AR1] incorporates linear terms and [AR2] incorporates non-linear terms.
First we consider the linear part as follows:

�AL�f _Ug � �AR1�fUg �16�

or

f
_Ug � �K�fUg; with �K� � �AL�ÿ1

�AR1�: �17�

The solution is

fUg � �X eLT Xÿ1
�fU0g: �18�

Since [K] is stationary, it is required to compute�XeLT Xÿ1
� once only at the beginning and this can be

used in each time step, thus saving on CPU time.
The solutionU obtained from the eigenvalue algorithm is used as initial condition for the next

algorithm as follows. We have for an element

�AL�f _Ug � �AR2�fUg: �19�

Denoting �U as the solution at time leveln � 1 and using the weighting coefficientY, we can obtain
the equation

�AL ÿYDtAR2�fUg � �AL � �1 ÿY�DtAR2�fUg; �20�

which can be written as the system of equations

�A�f �Ug � fRg: �21�

This can be solved using appropriate boundary conditions. From the form of [AL] and [AR2] it is seen
that the system of equations is uncoupled forz; u andv and hence can be solved independently asn
equations inn unknowns for each ofz; u andv by an efficient band matrix solver. It is possible to
iterate the solution for non-linear terms.

4. APPLICATIONS

4.1. 1D application

A channel withL � 200 m andh � 4 m is considered. It is discretized into four elements and five
nodes as shown in Figure 1 with a constant element size of 50 m. The boundary conditions imposed
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areu � 0 at the downstream closed end�x � L� and at the open end�x � 0� and the water level was
prescribed by the sinusoidal boundary condition given by equation (3) witha0

� 0�1 m and period
T � 200 s. The initial conditions were prescribed by the analytical formulae (4) and (5).

With these data,X ; Xÿ1 and �X eLT Xÿ1
� are found to be dense matrices (fully populated). The

eigenvalues and eigenvectors of the matrix [K] are complex owing to its asymmetry. The complex
parts in�X eLT Xÿ1

� were less than 1075.
The model was operated withDt � 1 s. The time histories (three cycles) of the water level at node

5 and the velocity at node 1 are shown in Figure 2 along with the analytical solutions. The figure
indicates that the computed and analytical solutions are in good agreement. Thus the method works
satisfactorily forDt � 1 s and if the initial conditions are given by the analytical formulae.

Figure 1. Rectangular channel and FEM mesh for 1D model

Figure 2. Water level and velocity time histories by 1D EV FEM (Dt � 1)
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4.2. 2D applications

Application to a rectangular channel.The EVSP FEM is tested by simulating a standing wave in a
rectangular channel of width 100 m,L � 200 m, h � 4 m and with the mesh shown in Figure 3. The
initial and boundary conditions used are the same as those of the 1D application. The friction and
Coriolis terms are neglected. The water level at the closed end (node 15) and the velocity at the open
end (node 3) are plotted along with the analytical solutions in Figure 4. They are obtained with
Dt � 2 s anda � 2 m2 s71. The corresponding results withDt � 4 s anda � 4 m2 s71 are shown in
Figure 5. These figures indicate good agreement between the computed and analytical solutions. Thus
the method works satisfactorily forDt less than 5 s and for a suitable value ofa (to be decided by trial
and error).

Application to a rectangular harbour.A simple problem of a rectangular harbour 20 km6
32�5 km in size has been considered. The depth of the harbour is assumed to be constant and equal to
10 m. The harbour is open at one end, as shown in Figure 6. A sinusoidal boundary condition given
by equation (3) witha0

� 2 m, o � 2p=T and T � 12�4 h is prescribed at the open boundary, as

Figure 3. FEM mesh for rectangular channel for 2D model

Figure 4. Water level and velocity time histories by EVSP�Dt � 2; a � 2� 2D rectangular channel model
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shown in Figure 7. At the closed boundary the normal velocity is assumed to be zero. Chezy’s
coefficients and the Coriolis parameter are assumed to be 40 m1=2 s71 and 0�00005 respectively. The
eddy viscosity coefficient is taken to be 4000 m2 s71 in the EV method. The FEM mesh used is
shown in Figure 6(a) and contains 48 elements and 35 nodes. Both the EV and EVSP methods have
been used to simulate the flow in the rectangular harbour withDt � 120 s. Their results are compared
with those obtained by well-tested methods, namely the ADI finite difference method12 and the wave
equation model (WEM).5 The mesh used for the ADI finite difference method is shown in Figure
6(b), in which the water level and velocity are computed at different locations (staggered grid).

The four models EV, EVSP, ADI and WEM have been operated for the rectangular harbour
problem. The models begin with a cold start and the results are stabilized after the second cycle. The
results of the second cycle are used in the analysis. The time histories of the water level and velocity
at node 7 obtained by all the methods are shown in Figures 8 and 9 respectively. From these figures it
can be seen that the time histories obtained by the four methods are similar, with some phase
difference. The water level variations of EV, EVSP and WEM are close, while that of ADI is a little
different because of the larger phase difference and damping. The time histories of the velocity

Figure 5. Water level and velocity time histories by EVSP�Dt � 4; a � 4� 2D rectangular channel model

Figure 6. (a) FEM and (b) FDM meshes for 2D rectangular harbour model
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obtained by WEM and ADI are close, while those of EV and EVSP are a little different from that of
WEM. The variations in the water level and velocity with the distance from the open end at a time of
3 h are shown in Figures 10 and 11 respectively, which indicate fewer spatial oscillations in the water
level variations of EV and EVSP. In the velocity variation of ADI some oscillations are observed,
while in the velocity variations of EV and EVSP there are fewer spatial oscillations. It can also be
seen from these figures that the spatial variations in the water level and velocity obtained by EV and
EVSP are very close to those of WEM, which is a rigorously tested method. This indicates
satisfactory working of the EV and EVSP methods. However, it should be noted that these methods
gave proper results when the eddy viscosity coefficient was taken to be 4000 m2 s71, whereas this
coefficient was neglected in the other two methods. The velocity field obtained by EVSP is shown in
Figure 12.

In order to compare the efficiency of the various methods, the computer times required for running
the various models on the Cyber 840A computer system are listed in Table I.

The table indicates that the ADI scheme allows the use of a larger time step and is the most
efficient among the four. WEM, being implicit in the time domain, allows a larger time step than do
EV and EVSP. Although the EV and EVSP methods are analytical but explicit in the time domain,
they work for a smaller time step. In the EV method, since the solution involves the computation of
eigenvalues and eigenvectors of a3n � 3n matrix and the inversion of a3n � 3n complex matrix in
each step, it requires a very large computer time as indicated in Table I. Hence this method is not

Figure 7. Boundary condition at open end for 2D rectangular harbour model

Figure 8. Time history of water level at node 7 (by ADI, WEM, EV, EVSP), 2D rectangular harbour model
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suitable for practical applications where a large number of nodes and a small time step are required to
be used. The EVSP method is more efficient than the EV method, since it requires a computer time of
2650 s as against 27,830 s for the EV method for one cycle of 12�4 h. However, the performance of
the EVSP method is poor compared with that of the ADI and WEM methods as seen from Table I.

5. CONCLUSIONS

In general, finite element methods for solution of the shallow water equations are based on
discretization of the time domain by finite differences. An attempt is made here to develop and
implement an FEM with a closed-form solution technique for time discretization, based on the
eigenvalues=vectors of a coefficient matrix and using a finite element technique for space
discretization. The method is used to solve the 1D (simplified) and 2D shallow water equations. Its

Figure 9. Time history of velocity at node 7 (by WEM, ADI, EV, EVSP), 2D rectangular harbour model

Figure 10. Water level variation with distance at 3 h (by ADI, WEM, EV, EVSP), 2D rectangular harbour model

Figure 11. Velocity variation with distance at 3 h (by ADI, WEM, EV, EVSP), 2D rectangular harbour model

FINITE ELEMENT TIDAL COMPUTATIONS 961

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 953–963 (1997)



application to rectangular channel and harbour problems indicated satisfactory performance for a
smaller time step and a suitable eddy viscosity. It is noticed that the efficiency of the eigenvalue FEM
is improved by a factor of 10 if one uses time splitting and computes the eigenvalues=vectors of the
coefficient matrix only once at the beginning. However, the performance is still poor compared to
that of other methods.
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Figure 12. Velocity field by EVSP

Table I. Computer time required for rectangular harbour model

Method Period
(h)

Time step
(s)

No. of
time steps

No. of
nodes

CPU time
per period

(s)

CPU time per
step per node

�10ÿ3 s)

ADI (FDM) 12�4 720 62 27 2 1�2
WEM 12�4 360 124 35 25 5�8
EVSP 12�4 120 372 35 2650 203�5
EV 12�4 120 372 35 27830 2137�5
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